Part Number Hot Search : 
TA124E HCT138 MM3082K DS12R887 8S600A 2SK2595 68HC05 ATMEGA32
Product Description
Full Text Search
 

To Download TS925AID Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/15 n rail to rail input and output n low noise : 9 nv/ ? hz n low distortion n high output current : 80ma n (able to drive 32 w loads) n high speed : 4mhz, 1.3v/ m s n operating from 2.7v to 12v n low input offset voltage : 900 m v max. (ts925a) n adjustable phantom ground (vcc/2) n standby mode n esd internal protection : 2kv n latch-up immunity n macromodel included in this n specification description the ts925 is a rail to rail quad bicmos op- erational amplifier optimized and fully specified for 3v and 5v operation. high output current allows low load impedances to be driven. an internal low impedance phantom ground eliminates the need for an external ref- erence voltage or biasing arrangement. the ts925 exhibits a very low noise, low distor- tion and high output current making this device an excellent choice for high quality, low voltage or battery operated audio/telecom systems. the device is stable for capacitive loads up to 500pf. when the standby mode is enabled, the total consumption drops to 6 m a (v cc = 3v). applications n headphone amplifier n soundcard amplifier, piezoelectric speaker n mpeg boards, multimedia systems, ... n cordless telephones and portable communi- cation equipment n line driver, buffer n instrumentation with low noise as key factor order code n = dual in line package (dip) d = small outline package (so) - also available in tape & reel (dt) p = thin shrink small outline package (tssop) - only available in tape & reel (pt) pin connections (top view) part number temperature range package ndp ts925i -40c, +125c n dip16 (plastic package) d so16 (plastic micropackage) p tssop16 (thin shrink small outline package) 1 2 3 4 13 14 15 16 5 6 7 8 12 11 10 9 + - + - - + output 1 inverting input 1 non-inverting input 1 v cc + + - v cc - non-inverting input 2 inverting input 2 output 2 phantom ground output 4 inverting input 4 non-inverting input 4 non-inverting input 3 inverting input 3 output 3 stdby ts925 rail to rail high output current quad operational amplifier february 2001
ts925 2/15 absolute maximum ratings operating conditions symbol parameter value unit v cc supply voltage 1) 14 v v id differential input voltage 2) 1 v v i input voltage 3) -0.3 to 14 v t oper operating free air temperature range -40 to +125 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient 130 c/w output short circuit duration see note 4) c 1. all voltage values, except differential voltage are with respect to network ground terminal. 2. differential voltages are the non-inverting input terminal with respect to the inverting input t erminal. 3. the magnitude of input and output voltages must never exceed v cc + +0.3v. 4. short-circuits can cause excessive heating. destructive dissipation can result from simultaneous short-circuit on all amplifi ers. do not short circuit outputs to vcc+ when exceeding 8v : this can induce reliability defects. symbol parameter value unit v cc supply voltage 2.7 to 12 v v icm common mode input voltage range v cc - -0.2 to v cc + +0.2 v
ts925 3/15 electrical characteristics v cc + = 3v, v cc - = 0v, t amb = 25c (unless otherwise specified) operational amplifier symbol parameter min. typ. max. unit v io input offset voltage ts925 ts925a t min. t amb t max. ts925 ts925a 3 0.9 5 1.8 mv dv io input offset voltage drift 2 m v/c i io input offset current v out = 1.5v 130 na i ib input bias current v out = 1.5v 15 100 na v oh high level output voltage r l = 10k r l connected to v cc/2 r l = 600 w r l = 32 w 2.90 2.87 2.63 v v ol low level output voltage r l = 10k r l connected to v cc/2 r l = 600 w r l = 32 w 180 50 100 mv a vd large signal voltage gain (v out = 2vpk-pk) r l = 10k r l = 600 w r l = 32 w 200 35 16 v/mv gbp gain bandwith product r l = 600 w 4 mhz cmr common mode rejection ratio 60 80 db svr supply voltage rejection ratio v cc = 2.7 to 3.3v 60 85 db i o output short-circuit current 50 80 ma sr slew rate 0.7 1.3 v/ m s pm phase margin at unit gain r l = 600 w, c l =100pf 68 degrees gm gain margin r l = 600 w, c l =100pf 12 db e n equivalent input noise voltage f = 1khz 9 thd total harmonic distortion v out = 2vpk-pk , f = 1khz, a v = 1, r l =600 w 0.01 % c s channel separation 120 db nv hz ----------- -
ts925 4/15 global circuit phantom ground symbol parameter min. typ max. unit i cc total supply current no load, v out = v cc/2 57 ma i stby total supply current in standby (pin 9 connected to v cc - ) 6 m a v enstby pin 9 voltage to enable the standby mode 1) t min t amb t max 1. the standby mode is currently enabled when pin 9 is grounded and disabled when pin 9 is left open. 0.3 0.4 v v distby pin 9 voltage to disable the standby mode (see note1) t min t amb t max 1.1 1 v symbol parameter min. typ max. unit v pg phantom ground output voltage no output current v cc/2 -5% v cc/2 v cc/2 +5% v i pgsc phantom ground output short circuit current (sourced) 12 18 ma z pg phantom ground impedance dc to 20khz 3 w e npg phantom ground output voltage noise (f=1khz) c dec = 100pf c dec = 1nf c dec = 10nf 1) 1. c dec is the decoupling capacitor on pin9 200 40 17 i pgsk phantom ground output short circuit current (sinked) 12 18 ma nv hz ----------- -
ts925 5/15 electrical characteristics v cc + = 5v, v cc - = 0v, t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit v io input offset voltage ts925 ts925a t min. t amb t max. ts925 ts925a 3 0.9 5 1.8 mv dv io input offset voltage drift 2 m v/c i io input offset current v out = 2.5v 130 na i ib input bias current v out = 2.5v 15 100 na v oh high level output voltage r l = 10k r l connected to v cc/2 r l = 600 w r l = 32 w 4.90 4.85 4.4 v v ol low level output voltage r l = 10k r l connected to v cc/2 r l = 600 w r l = 32 w 300 50 120 mv a vd large signal voltage gain v out = 4vpk-pk r l = 10k r l = 600 w v out = 4vpk-pk r l = 32 w 200 40 17 v/mv gbp gain bandwith product r l = 600 w 4 mhz cmr common mode rejection ratio 60 80 db svr supply voltage rejection ratio v cc = 3v to 5v 60 85 db i o output short-circuit current 50 80 ma sr slew rate 0.7 1.3 v/ m s pm phase margin at unit gain r l = 600 w, c l =100pf 68 degrees gm gain margin r l = 600 w, c l =100pf 12 db e n equivalent input noise voltage f = 1khz 9 thd total harmonic distortion v out = 3vpk-pk , f = 1khz, a v = 1, r l =600 w 0.01 % c s channel separation 120 db nv hz ----------- -
ts925 6/15 global circuit phantom ground symbol parameter min. typ max. unit i cc total supply current no load, v out = v cc/2 6 8 ma i stby total supply current in standby (pin 9 connected to v cc - ) 10 m a v enstby pin 9 voltage to enable the standby mode 1) t min t amb t max 1. the standby mode is currently enabled when pin 9 is grounded and disabled when pin 9 is left open. 0.3 0.4 v v distby pin 9 voltage to disable the standby mode (see note1) t min t amb t max 1.1 1 v symbol parameter min. typ max. unit v pg phantom ground output voltage no output current v cc/2 -5% v cc/2 v cc/2 +5% v i pgsc phantom ground output short circuit current (sourced) 12 18 ma z pg phantom ground impedance dc to 20khz 3 w e npg phantom ground output voltage noise (f=1khz) c dec = 100pf c dec = 1nf c dec = 10nf 1) 1. c dec is the decoupling capacitor on pin9 200 40 17 i pgsk phantom ground output short circuit current (sinked) 12 18 ma nv hz ----------- -
ts925 7/15 input offset voltage distribution supply current/amplifier vs temperature output short circuit current vs output voltage total supply current vssupply voltage with no load output short circuit current vs output voltage output short circuit current vs output voltage
ts925 8/15 output short circuit current vs temperature distorsion + noise vs frequency thd + noise vs frequency voltage gain and phase vs frequency thd + noise vs frequency thd + noise vs frequency
ts925 9/15 equivalent input noise vs frequency phantom ground short circuit output current vs phantom ground output voltage total supply current vs standby input voltage
10/15 the ts925 is an input/output rail to rail quad bic- mos operational amplifier. it is able to operate with low supply voltages (2.7v) and to drive low output loads such as 32 w . as an illustration of these features, the following technical note highlights many of the advantages of the device in a global audio application. application circuit figure 1 shows two operators (a1, a4) used in a preamplifier configuration, and the two others in a push-pull configuration driving a headset. the phantom ground is used as a common reference level (v cc/2 ). the power supply is delivered from two lr6 bat- ter-ies (2x1.5v nominal). preamplifier : the operators a1 and a4 are wired with a non inverting gain of respectively : a1# (r4/(r3+r17)) a4# r6/r5 with the following values chosen : r4=22k w - r3=50 w - r17=1.2k w r6=47k w - r5=1.2k w , the gain of the preamplifier chain is thus 58db. alternatively, the gain of a1 can be adjusted by choosing a jfet transistor q1 instead of r17. this jfet voltage controlled resistor arrangement forms an automatic level control (alc) circuit, use-ful in many mic preamplifier applications. the mean rectified peak level of the output signal enve-lope is used to control the preamplifier gain. figure 1: electrical schematic headphone amplifier : the operators a2 and a3 are organized in a push-pull configuration with a gain of 5. the stereo inputs can be connected to a cd-player and the ts925 drives directly the head-phone speakers.this configuration shows the abil-ity of the circuit to drive 32 w load with a maximum output swing and a high fidelity for re- producing sound and music. figure 4 shows the available signal swing at the headset outputs : two other rail to rail competitor parts are employed in the same circuit for com- pari-40 sson (note the much reduced clipping lev- el and crossover distortion) microphone c1 r2 r3 c14 c2 c3 c4 mike preamplifier c5 r5 alc d1 d2 c6 c9 mike output stby c7 r7 vcc c15 c10 c18 c8 amplifier input left amplifier input right headphones amplifier headphones r8 r18 r17 q1 phantom ground c9 4 8 9 13 r10 r11 r12 r13 c10 r15 7 6 5 10 10 11 12 c11 r16 c12 c13 application note preamplifier and speaker driver using ts925 by f. maricourt
ts925 11/15 figure 2 : frequency response of the global preamplifier chain figure 4 : maximum voltage swing at headphone outputs (rl = 32 w ) figure 3 : voltage noise density vs frequency at preamplifier output figure 5 : thd + noise vs frequency (headphone outputs) 100 1000 10000 100000 1000000 10000000 1.0e+08 20 30 40 50 60 70 frequency (hz) voltage gain (db) 10 100 1000 10000 100000 7 8 9 10 11 12 13 14 15 frequency (hz) nois e d e n si t y( nv/ sqrt(hz) ) 100 1000 10000 100000 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 hz thd+no ise ( % )
ts925 12/15 macromodel ** standard linear ics macromodels, 1996. ** connections : * 1 inverting input * 2 non-inverting input * 3 output * 4 positive power supply * 5 negative power supply .subckt ts925 1 3 2 4 5 (analog) ********************************************************* .model mdth d is=1e-8 kf=2.664234e-16 cjo=10f * input stage cip 2 5 1.000000e-12 cin 1 5 1.000000e-12 eip 10 5 2 5 1 ein 16 5 1 5 1 rip 10 11 8.125000e+00 rin 15 16 8.125000e+00 ris 11 15 2.238465e+02 dip 11 12 mdth 400e-12 din 15 14 mdth 400e-12 vofp 12 13 dc 153.5u vofn 13 14 dc 0 ipol 13 5 3.200000e-05 cps 11 15 1e-9 dinn 17 13 mdth 400e-12 vin 17 5 -0.100000e+00 dinr 15 18 mdth 400e-12 vip 4 18 0.400000e+00 fcp 4 5 vofp 1.865000e+02 fcn 5 4 vofn 1.865000e+02 fibp 2 5 vofp 6.250000e-03 fibn 5 1 vofn 6.250000e-03 * gm1 stage *************** fgm1p 119 5 vofp 1.1 fgm1n 119 5 vofn 1.1 rap 119 4 2.6e+06 ran 119 5 2.6e+06 * gm2 stage *************** g2p 19 5 119 5 1.92e-02 g2n 19 5 119 4 1.92e-02 r2p 19 4 1e+07 r2n 19 5 1e+07 ************************** vint1 500 0 5 gconvp 500 501 119 4 19.38 !envoie ds vp, i(vp)=(v119-v4)/2/ut vp 501 0 0 gconvn 500 502 119 5 19.38 !envoie ds vn, i(vn)=(v119-v5)/2/ut vn 502 0 0 ********* orientation isink isource ******* vint2 503 0 5 fcopy 503 504 vout 1 dcopyp 504 505 mdth 400e-9 vcopyp 505 0 0 dcopyn 506 504 mdth 400e-9 vcopyn 0 506 0 *************************** f2pp 19 5 poly(2) vcopyp vp 0 0 0 0 0.5 !multiplie i(vout)*i(vp)=iout*(v119-v4)/2/ut f2pn 19 5 poly(2) vcopyp vn 0 0 0 0 0.5 !multiplie i(vout)*i(vn)=iout*(v119-v5)/2/ut f2np 19 5 poly(2) vcopyn vp 0 0 0 0 1.75 !multiplie i(vout)*i(vp)=iout*(v119-v4)/2/ut f2nn 19 5 poly(2) vcopyn vn 0 0 0 0 1.75 !multiplie i(vout)*i(vn)=iout*(v119-v5)/2/ut * compensation ************ cc 19 119 25p * output*********** dopm 19 22 mdth 400e-12 donm 21 19 mdth 400e-12 hopm 22 28 vout 6.250000e+02 vipm 28 4 5.000000e+01 honm 21 27 vout 6.250000e+02 vinm 5 27 5.000000e+01 vout 3 23 0 rout 23 19 6 cout 3 5 1.300000e-10 dop 19 25 mdth 400e-12 vop 4 25 1.052 don 24 19 mdth 400e-12 von 24 5 1.052 .ends electrical characteristics v cc + = 3v, v cc - = 0v, r l , c l connected to v cc/2 , t amb = 25c (unless otherwise specified) symbol conditions value unit v io 0mv a vd r l = 10k w 200 v/mv i cc no load, per operator 1.2 ma v icm -0.2 to 3.2 v v oh r l = 10k w 2.95 v v ol r l = 10k w 25 mv i sink v o = 3v 80 ma i source v o = 0v 80 ma gbp r l = 600k w 4mhz sr r l = 10k w , c l = 100pf 1.3 v/ m s f m r l = 600k w 68 degrees
ts925 13/15 package mechanical data 16 pins - plastic package dim. millimeters inches min. typ. max. min. typ. max. a1 0.51 0.020 b 0.77 1.65 0.030 0.065 b 0.5 0.020 b1 0.25 0.010 d 20 0.787 e 8.5 0.335 e 2.54 0.100 e3 17.78 0.700 f 7.1 0.280 i 5.1 0.201 l 3.3 0.130 z 1.27 0.050
ts925 14/15 package mechanical data 16 pins - plastic micropackage (so) dim. millimeters inches min. typ. max. min. typ. max. a 1.75 0.069 a1 0.1 0.2 0.004 0.008 a2 1.6 0.063 b 0.35 0.46 0.014 0.018 b1 0.19 0.25 0.007 0.010 c 0.5 0.020 c1 45 (typ.) d 9.8 10 0.386 0.394 e 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 8.89 0.350 f 3.8 4.0 0.150 0.157 g 4.6 5.3 0.181 0.209 l 0.5 1.27 0.020 0.050 m 0.62 0.024 s 8 (max.)
ts925 15/15 information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the co nsequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specifications mentioned in this publicati on are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics prod ucts are not authorized for use as critical components in life support devices or systems without express written approval of stmicroelectro nics. ? the st logo is a registered trademark of stmicroelectronics ? 2001 stmicroelectronics - printed in italy - all rights reserved stmicroelectronics group of companies australia - brazil - china - finland - france - germany - hong kong - india - italy - japan - malaysia - malta - morocco singapore - spain - sweden - switzerland - united kingdom ? http://www.st.com package mechanical data 16 pins - thin shrink small outline package dim. millimeters inches min. typ. max. min. typ. max. a 1.20 0.05 a1 0.05 0.15 0.01 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.15 0.30 0.005 0.15 c 0.1 0.20 0.003 0.012 d 4.90 5.00 5.10 0.192 0.196 0.20 e 6.40 0.252 e1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.025 k 0 8 0 8 l 0.50 0.60 0.75 0.09 0.0236 0.030 c e1 k l e e b d pin 1 identification 1 8 9 16 seating plane c aaa c 0,25 mm .010 inch gage plane l1 a a2 a1


▲Up To Search▲   

 
Price & Availability of TS925AID

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X